Products in Hopf-cyclic Cohomology
نویسندگان
چکیده
We construct several pairings in Hopf-cyclic cohomology of (co)module (co)algebras with arbitrary coefficients. As a special case of one of these pairings, we recover the Connes-Moscovici characteristic map in Hopf-cyclic cohomology. We also prove that this particular pairing, along with a few others, would stay the same if we replace the derived category of (co)cyclic modules with the homotopy category of (special) towers of super complexes, or the derived category of mixed complexes.
منابع مشابه
Pairings in Hopf-cyclic cohomology of algebras and coalgebras with coefficients
This paper is concerned with the theory of cup-products in Hopf-type cyclic cohomology of algebras and coalgebras. Here we give detailed proofs of the statements, announced in our previous paper [21]. We show that the cyclic cohomology of a coalgebra can be obtained from a construction involving noncommutative Weil algebra. Then we use a generalization of Quillen and Crainic’s construction (see...
متن کاملBivariant Hopf Cyclic Cohomology
For module algebras and module coalgebras over an arbitrary bialgebra, we define two types of bivariant cyclic cohomology groups called bivariant Hopf cyclic cohomology and bivariant equivariant cyclic cohomology. These groups are defined through an extension of Connes’ cyclic category Λ. We show that, in the case of module coalgebras, bivariant Hopf cyclic cohomology specializes to Hopf cyclic...
متن کاملPara-Hopf algebroids and their cyclic cohomology
We introduce the concept of para-Hopf algebroid and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, ...
متن کاملOn the Cyclic Cohomology of Extended Hopf Algebras
We introduce the concept of extended Hopf algebras and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Extended Hopf algebras are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structu...
متن کاملOn Cohomology of Hopf Algebroids
Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscov...
متن کامل